skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Archer, Stephanie K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hurricanes can introduce metals into coastal systems. Unfortunately, metal concentrations are unknown in many hurricane prone locations. Here we measured vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, arsenic, molybdenum, cadmium, antimony, barium, lead, and uranium in surface water, sediments, and seagrass (Thalassia testudinum) collected in seagrass beds and marinas around The Abacos, The Bahamas in November 2019, May 2020, and June and December 2021 to establish a post-Hurricane Dorian baseline, assess changes post-storm, and understand bioconcentration in seagrass. Metal concentrations were higher in marinas and several increased over time. Also, metal profiles in sediments became more similar over time. Together, these suggest that metals were impacted by Hurricane Dorian and are either returning to pre-storm conditions or increasing due to recovery-related activities. Thalassia testudinum uptakes most metals more readily from surface water than sediments. Therefore, seagrasses may phytoremediate metals, but also transfer metals to higher trophic levels. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. Abstract Field‐based experiences enhance cognitive and affective skill sets of undergraduate students. Although field‐based learning is a highly effective pedagogical modality, it is not accessible to all students, necessitating the development and evaluation of alternate modalities that convey equivalent benefits. Virtual reality (VR) may allow students to engage in experiences without requiring them to be physically present within a field environment. Although VR is gaining popularity, there are limited examples of using it to simulate field experiences and of its efficacy in influencing student learning gains and attitudes toward environmental content. Therefore, we created immersive 360° cinematic VR (CVR) experiences focused on coastal marine ecosystems and compared them to traditional modalities: a field course and 2D videos focused on the same content. Students (n = 86) across science, technology, engineering, and mathematics (STEM) and non‐STEM majors from three institutions—Bentley University, Florida International University, and Louisiana Universities Marine Consortium—were given a preassessment/postassessment to understand learning gains and attitude changes related to each modality. Although significant learning gains happened across all modalities, CVR students experienced the greatest learning gains, though postscores were correlated with prescores and CVR students had lower prescores than field course students. There were no cross‐institutional or major‐related differences in learning gains for field course students. Students across all modalities experienced shifts in attitudes, with consistent increases in the use of keywords related to coastal marine ecosystems in postassessments. Ultimately, CVR is an effective supplement or alternative for undergraduate students who cannot access in‐person field‐based experiences and may be particularly impactful for non‐STEM majors. 
    more » « less
    Free, publicly-accessible full text available April 4, 2026